Back To: Home

CLICK HERE FOR WHAT'S NEW IN:
 




 

A genome’s got to know its limitations
March 2013
by Anthony Walker, Alacrita  |  Email the author
SHARING OPTIONS:

The U.K. government has become the latest believer in the genome. In December 2012, the prime minister (PM) of the United Kingdom announced an ambitious plan to fully sequence the genomes of 100,000 Britons with cancer and rare diseases. The PM says: "hundreds of thousands of businesses … are built on top of the Apple App Store, and we want to see the emergence of genomic platforms in the U.K. that similarly support the emergence of new companies and innovations."  
 
Although we are also believers in genomics, we suspect that it will take the conventional 20 years or so between investment in research and commercial exploitation. We also feel that application of genomics to healthcare delivery will take place by a large number of small steps, and not as a big bang. In short, a genome's got to know its limitations.
 
The current state-of-the-art technology reminds me of neuroscience in the 1970s, when we were using microelectrodes to read the electrical activity of single neurons.  
Unfortunately, both the technology of the time and our less-than-perfect technique often yielded poor results—noisy signals that were a composite of many cells' asynchronous activity, aptly dubbed "Combined Recording of Action Potentials (CRAP)."
 
Indeed, efforts of the day to understand brain function through microelectrode studies were considered analogous to investigating the workings of a computer armed with a set of crocodile clips and a voltmeter. The question is, are we doing something very similar in the headlong rush to sequence whole genomes from a myriad (or in this case, ten myriads) of patients? Consider the following complications:
 
1. Cancer is dynamic. Taking a tumor sample and sequencing it gives you a snapshot, and expecting this to provide the basis for understanding disease progression is like cutting a frame out of a movie and trying to predict what happens next. The value of the snapshot is in hypothesis-building, not the panacea in itself.  
 
2. Cancer is highly heterogeneous, even between cells in a single tumor deposit. Will we be sequencing DNA extracted from >1 cell (think neuroscience CRAP, above), or will we sequence a single cell (in which case, how do we make sure it will be representative of the overall disease)? This may delay or limit the "molecular pharmacy" concept that envisions cancer cures achieved by combining several very specific inhibitors to match the genomic profile of a tumor.  
 
3. Pathways are complex with multiple branches, loops and a high level of redundancy. It's very tempting to overestimate the potential of gene mutation discoveries, e.g., the 2005 finding of the recurrent unique acquired clonal mutation JAK2V617F in myeloproliferative disease. As a candidate cancer-driving mutation, it was logical to create JAK2 inhibitors in the hope for a cure, only to find, at best, symptom relief in the clinical setting. Complications lie in mutations upstream and downstream of JAK2, many of which are "private" or unique to an individual tumor. That's not to underplay the importance of understanding the JAK2 pathway, it's just that it may take 20 years for that discovery to come to genuine fruition as the surrounding biology is unraveled.  
 
4. The larger the database, the greater the bioinformatics challenge. A 100,000 whole-genome dataset will be so complex—and this complexity will be magnified manifold when other public domain databases are bundled—that there are bound to be vast numbers of correlations with clinical observations, including many spurious ones. Such data dredging, bias or confounding is well-known in epidemiological studies, and according to Douglas Merrill, former chief information officer and vice president of engineering at Google, "With too little data, you won't be able to make any conclusions that you trust. With loads of data you will find relationships that aren't real." Moreover, the quality of the database and its curation are crucial, and the detail of the clinical information associated with each patient is pivotal. Smaller, higher-quality datasets will be much more valuable, and this is where private investment is sensibly focused.  
 
5. Lastly, genotype is the key to clinical management and/or drug-hunting currently only in a very small number of situations. The poster child, Kalydeco (launched 23 years after the discovery of the underlying mutation), was molecularly designed to treat patients with the G551D mutation (~4 percent of cystic fibrosis patients). But most diseases are multi-gene and driven by a complex interplay with environmental and behavioral factors. We have made steps to an age where diseases aren't diagnosed by phenotype ("breast cancer"), but by their molecular pathology (HER2/neu amplification), and these are still baby steps. In his 10th annual National Human Genome Research Institute Trent Lectureship address, Bert Vogelstien said, "the study of genetic alterations in tumors will eventually be able to add quite a bit to standard, conventional histopathological analysis" [emphasis added]. Major progress toward molecular pathology will require not only genomics, but also epigenetics (inherited changes in the genome caused by factors other than DNA sequence changes), transcriptomics, proteomics, kinomics and metabolomics, conducted in longitudinal studies in parallel with meticulous clinical characterization, and banking of samples for all of the as-yet undiscovered 'omics studies that future generations will hail as "the key."  
 
So while we should not pack up our tents and move away from genomics, we should integrate it into an intelligent framework. There is already a vast amount of cancer genome sequencing in progress, and we need to make sure that newly funded work is genuinely additive. Let's not just build ever-more spectacular haystacks of data and then send an army of bioinformaticians off to find the needles. Fishing expeditions do not have a great track record in drug discovery (witness the spectacular fail of combinatorial chemistry and high-throughput screening). Genomics is no more the single answer than it was when some enthusiasts hailed the 1999 deal between Human Genome Sciences ("they have all the targets") and Cambridge Antibody Technology ("they have all the drugs").  
 
The Apple App Store was built within a five-year period; genomic "apps" will take a lot longer, maybe 20 years or more. After all, the genome's got to know its limitations.  
Anthony Walker is a partner at Alacrita Consulting, a transatlantic advisory firm providing expertise-based consulting services to the pharmaceutical, biotechnology and life-science sectors. His experience includes due diligence, technology and market appraisal, business planning and strategic management. Previously, Walker was CEO of Onyvax Ltd., a biotechnology company developing cancer vaccines.  
 
 
                         Cambridge Antibody Technology 
 

Back



PAGE UTILITIES


CONTACT US
DDNEWS
Published by Old River Publications LLC
19035 Old Detroit Road
Rocky River, OH USA 44116
Ph: 440-331-6600  |  Fax: 440-331-7563
 
© Copyright 2017 Old River Publications LLC. All righs reserved.  |  Web site managed and designed by OffWhite.